Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi D, E, F lần lượt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Đường thẳng EF cắt đường tròn (O) tại điểm thứ nhất M (M khác phía với O so với đường thẳng AB), đường thẳng BM cắt đường ..
----- Nội dung dịch tự động từ ảnh ----- 1. Cho tam giác nhọn ABC nội tiếp đường tròn (O). Gọi D, E, F lần lượt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Dương thẳng EF cắt đường tròn (O) tại điểm thứ nhất M (M khác phía với O so với đường thẳng AB), đường thẳng BM cắt đường thẳng DF tại N. Chứng minh rằng: a. EF ⊥ OA. b. AM = AN.
2. Cho tam giác nhọn ABC, D là điểm trong tam giác đó sao cho ADB = ACB + 90° và AC.BD = AB.CD. Chứng minh \(\frac{AB.CD}{AC.BD} = \sqrt{2}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi. Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ