Cho các số thực x, y thỏa mãn: 4x2 + 2xy + y2 = 3.
Tìm GTNN, GTLN của P = x2 + 2xy – y2
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(\frac{P}{3} = \frac{{{x^2} + 2xy - {y^2}}}{{4{x^2} + 2xy + {y^2}}}\) (*)
Xét y = 0 thì x2 = \(\frac{3}{4} \Rightarrow x = \pm \frac{{\sqrt 3 }}{2}\)
Suy ra: \[\left[ \begin{array}{l}P = {\left( {\frac{{\sqrt 3 }}{2}} \right)^2} + 2.\frac{{\sqrt 3 }}{2}.0 - {0^2} = \frac{3}{4}\\P = {\left( { - \frac{{\sqrt 3 }}{2}} \right)^2} + 2.\left( { - \frac{{\sqrt 3 }}{2}.} \right)0 - {0^2} = \frac{3}{4}\end{array} \right.\]
Xét y khác 0, chia cả (*) cho y2 ta được: \(\frac{P}{3} = \frac{{{{\left( {\frac{x}{y}} \right)}^2} + 2\frac{x}{y} - 1}}{{4{{\left( {\frac{x}{y}} \right)}^2} + 2\frac{x}{y} + 1}}\)
Đặt \(\frac{x}{y} = a \Rightarrow \frac{P}{3} = \frac{{{a^2} + 2a - 1}}{{4{a^2} + 2a + 1}}\)
* Xét \(\frac{P}{3} - \left( { - 2} \right) = \frac{{{a^2} + 2a - 1}}{{4{a^2} + 2a + 1}} + 2 = \frac{{{{\left( {3a + 1} \right)}^2}}}{{4{a^2} + 2a + 1}}\)
Vì (3a + 1)2 ≥ 0 với mọi a nên \(\frac{{{{\left( {3a + 1} \right)}^2}}}{{4{a^2} + 2a + 1}} \ge 0\)
Suy ra: \(\frac{P}{3} - \left( { - 2} \right) \ge 0 \Rightarrow P \ge - 6\)
Vậy GTNN của P là –6 khi 3a + 1 = 0 hay a = \(\frac{{ - 1}}{3} \Leftrightarrow \frac{x}{y} = \frac{{ - 1}}{3} \Leftrightarrow - 3x = y\)
Thay vào 4x2 + 2xy + y2 = 3, ta được: 7x2 = 3
⇔ \[\left[ \begin{array}{l}x = \frac{{\sqrt {21} }}{7}\\x = - \frac{{\sqrt {21} }}{7}\end{array} \right. \Rightarrow \left[ \begin{array}{l}y = \frac{{ - 3\sqrt {21} }}{7}\\y = \frac{{3\sqrt {21} }}{7}\end{array} \right.\]
Vậy GTNN của P là –6 khi (x; y) = \(\left( {\frac{{\sqrt {21} }}{7};\frac{{ - 3\sqrt {21} }}{7}} \right);\left( { - \frac{{\sqrt {21} }}{7};\frac{{3\sqrt {21} }}{7}} \right)\)
* Xét \(\frac{P}{3} - \frac{1}{3} = \frac{{{a^2} + 2a - 1}}{{4{a^2} + 2a + 1}} - \frac{1}{3} = \frac{{ - {{\left( {a - 2} \right)}^2}}}{{4{a^2} + 2a + 1}}\)
Vì –(a – 2)2 ≤ 0 với mọi a nên: \(\frac{{ - {{\left( {a - 2} \right)}^2}}}{{4{a^2} + 2a + 1}} \le 0,\forall a\)
Suy ra: \(\frac{P}{3} - \frac{1}{3} \le 0 \Rightarrow P \le 1\)
Vậy GTLN của P là 1 khi a – 2 = 0 hay a = 2.
Khi đó x = 2y
Thay vào 4x2 + 2xy + y2 = 3, ta được: 21y2 = 3
⇔ \[\left[ \begin{array}{l}y = \frac{1}{{\sqrt 7 }}\\y = - \frac{1}{{\sqrt 7 }}\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = \frac{2}{{\sqrt 7 }}\\x = - \frac{2}{{\sqrt 7 }}\end{array} \right.\]
Vậy GTLN của P là 1 khi (x; y) = \(\left( {\frac{2}{{\sqrt 7 }};\frac{1}{{\sqrt 7 }}} \right);\left( { - \frac{2}{{\sqrt 7 }}; - \frac{1}{{\sqrt 7 }}} \right)\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |