LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho các số thực x, y thỏa mãn: 4x2 + 2xy + y2 = 3. Tìm GTNN, GTLN của P = x2 + 2xy – y2

Cho các số thực x, y thỏa mãn: 4x2 + 2xy + y2 = 3.

Tìm GTNN, GTLN của P = x2 + 2xy – y2

1 trả lời
Hỏi chi tiết
10
0
0
Đặng Bảo Trâm
10/09 17:46:37

Ta có: \(\frac{P}{3} = \frac{{{x^2} + 2xy - {y^2}}}{{4{x^2} + 2xy + {y^2}}}\) (*)

Xét y = 0 thì x2 = \(\frac{3}{4} \Rightarrow x = \pm \frac{{\sqrt 3 }}{2}\)

Suy ra: \[\left[ \begin{array}{l}P = {\left( {\frac{{\sqrt 3 }}{2}} \right)^2} + 2.\frac{{\sqrt 3 }}{2}.0 - {0^2} = \frac{3}{4}\\P = {\left( { - \frac{{\sqrt 3 }}{2}} \right)^2} + 2.\left( { - \frac{{\sqrt 3 }}{2}.} \right)0 - {0^2} = \frac{3}{4}\end{array} \right.\]

Xét y khác 0, chia cả (*) cho y2 ta được: \(\frac{P}{3} = \frac{{{{\left( {\frac{x}{y}} \right)}^2} + 2\frac{x}{y} - 1}}{{4{{\left( {\frac{x}{y}} \right)}^2} + 2\frac{x}{y} + 1}}\)

Đặt \(\frac{x}{y} = a \Rightarrow \frac{P}{3} = \frac{{{a^2} + 2a - 1}}{{4{a^2} + 2a + 1}}\)

* Xét \(\frac{P}{3} - \left( { - 2} \right) = \frac{{{a^2} + 2a - 1}}{{4{a^2} + 2a + 1}} + 2 = \frac{{{{\left( {3a + 1} \right)}^2}}}{{4{a^2} + 2a + 1}}\)

Vì (3a + 1)2 ≥ 0 với mọi a nên \(\frac{{{{\left( {3a + 1} \right)}^2}}}{{4{a^2} + 2a + 1}} \ge 0\)

Suy ra: \(\frac{P}{3} - \left( { - 2} \right) \ge 0 \Rightarrow P \ge - 6\)

Vậy GTNN của P là –6 khi 3a + 1 = 0 hay a = \(\frac{{ - 1}}{3} \Leftrightarrow \frac{x}{y} = \frac{{ - 1}}{3} \Leftrightarrow - 3x = y\)

Thay vào 4x2 + 2xy + y2 = 3, ta được: 7x2 = 3

⇔ \[\left[ \begin{array}{l}x = \frac{{\sqrt {21} }}{7}\\x = - \frac{{\sqrt {21} }}{7}\end{array} \right. \Rightarrow \left[ \begin{array}{l}y = \frac{{ - 3\sqrt {21} }}{7}\\y = \frac{{3\sqrt {21} }}{7}\end{array} \right.\]

Vậy GTNN của P là –6 khi (x; y) = \(\left( {\frac{{\sqrt {21} }}{7};\frac{{ - 3\sqrt {21} }}{7}} \right);\left( { - \frac{{\sqrt {21} }}{7};\frac{{3\sqrt {21} }}{7}} \right)\)

* Xét \(\frac{P}{3} - \frac{1}{3} = \frac{{{a^2} + 2a - 1}}{{4{a^2} + 2a + 1}} - \frac{1}{3} = \frac{{ - {{\left( {a - 2} \right)}^2}}}{{4{a^2} + 2a + 1}}\)

Vì –(a – 2)2 ≤ 0 với mọi a nên: \(\frac{{ - {{\left( {a - 2} \right)}^2}}}{{4{a^2} + 2a + 1}} \le 0,\forall a\)

Suy ra: \(\frac{P}{3} - \frac{1}{3} \le 0 \Rightarrow P \le 1\)

Vậy GTLN của P là 1 khi a – 2 = 0 hay a = 2.

Khi đó x = 2y

Thay vào 4x2 + 2xy + y2 = 3, ta được: 21y2 = 3

⇔ \[\left[ \begin{array}{l}y = \frac{1}{{\sqrt 7 }}\\y = - \frac{1}{{\sqrt 7 }}\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = \frac{2}{{\sqrt 7 }}\\x = - \frac{2}{{\sqrt 7 }}\end{array} \right.\]

Vậy GTLN của P là 1 khi (x; y) = \(\left( {\frac{2}{{\sqrt 7 }};\frac{1}{{\sqrt 7 }}} \right);\left( { - \frac{2}{{\sqrt 7 }}; - \frac{1}{{\sqrt 7 }}} \right)\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư