Một nhà máy sản xuất xe đạp cho thị trường châu Âu theo đơn giá 120 euro (€). Chi phí mỗi ngày của nhà máy được cho bởi hàm số
K(x) = 0,02x3 – 3x2 + 172x + 2 400,
trong đó x là số lượng xe đạp sản xuất được trong ngày hôm đó. Mỗi ngày có thể sản xuất tối đa 130 xe đạp. Giả sử số xe đạp sản xuất được trong mỗi ngày đều được bán hết vào cuối ngày đó.
Gọi G(x) là hàm số biểu diễn lợi nhuận hàng ngày của nhà máy (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2010).
Vẽ đồ thị hàm số G(x) trên đoạn [0; 130].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Doanh thu một ngày của nhà máy sản xuất là: P(x) = 120x (€), x ∈ [0; 130].
Lợi nhuận một ngày của nhà máy là:
G(x) = P(x) – K(x) = 120x – (0,02x3 – 3x2 + 172x + 2 400)
= –0,02x3 + 3x2 – 52x – 2 400 (€).
Vẽ đồ thị hàm số G(x) trên đoạn [0; 130]:
⦁ Ta có G’(x) = –0,06x2 + 6x – 52.
G’(x) = 0 ⇔ x ≈ 9,6 hoặc x ≈ 90,4.
Bảng biến thiên:
x | 0 | 9,6 | 90,4 | 130 | |||
G’(x) | – | 0 | + | 0 | – | ||
G(x) | –2 400 | –2 640,4 | 2 640,4 | –2 400 |
Hàm số nghịch biến trên [0; 9,6) và (90,4; 130]; đồng biến trên khoảng (9,6; 90,4).
⦁ Trên đoạn [0; 130], đồ thị hàm số cắt trục hoành tại các điểm (50; 0) và (120; 0); đồ thị cắt trục tung tại điểm (0; –2 400).
Vậy đồ thị hàm số G(x) trên đoạn [0; 130] được cho như hình dưới đây:
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |