LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4) là nn−32.

Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4) là nn−32.

1 trả lời
Hỏi chi tiết
10
0
0
Bạch Tuyết
12/09 15:59:14

Ta chứng minh bằng quy nạp theo n với n ≥ 4.

Bước 1. Với n = 4 ta có đa giác là tứ giác.

Số đường chéo của tứ giác là 2 =  44−32.

Như vậy khẳng định đúng cho trường hợp n = 4.

Bước 2. Giả sử khẳng định đúng với n = k (k ≥ 4), tức là ta có: Số đường chéo của một đa giác k cạnh (k ≥ 4) là kk−32.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Số đường chéo của một đa giác (k + 1) cạnh (k ≥ 4) là k+1k+1−32.

Thật vậy, xét đa giác (k + 1) cạnh A1A2...AkAk + 1, nối hai đỉnh A1 và Ak ta được đa giác k cạnh A1A2...Ak. Theo giả thiết quy nạp đa giác k cạnh này có kk−32 đường chéo.

Các đường chéo còn lại của đa giác (k + 1) cạnh ngoài kk−32 đường chéo này là các đoạn nối Ak + 1 với các đỉnh từ A2 đến Ak – 1 và đoạn A1Ak (màu đỏ). Tổng cộng có (k – 1) đường.

Vậy tổng số đường chéo của đa giác (k + 1) cạnh là:

kk−32 + (k – 1) = kk−3+2k−12

=k2−k−22=k+1k−22=k+1k+1−32.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 4.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư