LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn (O; R) đường kính AB. Trên đoạn OB lấy điểm H sao cho HB = 2HO. Đường thẳng vuông góc với AB tại H cắt nửa (O) tại D. Vẽ đường tròn (S) đường kính AO cắt AD tại C. a) Chứng minh C là trung điểm của AD. b) Chứng minh 4 điểm C, D, H, O cùng thuộc một đường tròn. c) CB cắt DO tại E. Chứng minh BC là tiếp tuyến của (S). d) Tính diện tích tam giác AEB theo R.

Cho nửa đường tròn (O; R) đường kính AB. Trên đoạn OB lấy điểm H sao cho HB = 2HO. Đường thẳng vuông góc với AB tại H cắt nửa (O) tại D. Vẽ đường tròn (S) đường kính AO cắt AD tại C.

a) Chứng minh C là trung điểm của AD.

b) Chứng minh 4 điểm C, D, H, O cùng thuộc một đường tròn.

c) CB cắt DO tại E. Chứng minh BC là tiếp tuyến của (S).

d) Tính diện tích tam giác AEB theo R.

1 trả lời
Hỏi chi tiết
7
0
0
Phạm Văn Phú
13/09 10:35:15

Lời giải

a) Vì tam giác ACO nội tiếp (S) đường kính AO nên tam giác ACO vuông tại C

Suy ra AC ⊥ CO

Xét (O) có AD là dây cung, AD ⊥ CO

Suy ra C là trung điểm của AD.

b) Xét tứ giác COHD có: \(\widehat {DCO} + \widehat {DHO} = 90^\circ + 90^\circ = 180^\circ \)

Þ tứ giác COHD nội tiếp

Vậy 4 điểm C, D, H, O cùng thuộc một đường tròn.

c) Ta có BH = 2HO, BH + HO = BO = R

\( \Rightarrow BH = \frac{2}{3}R,OH = \frac{1}{3}R\)

Ta có \(AH = AB - BH = 2{\rm{R}} - \frac{2}{3}R = \frac{4}{3}R\)

Þ AH = 2HB

Vì tam giác ABD nội tiếp (O) đường kính AB nên tam giác ABD vuông tại D

Mà BH ⊥ AB

Þ AD2 = AH . AB và BD2 = BH . AB

Þ AH = 2HB

Þ AD2 = 2BD2

\( \Rightarrow B{{\rm{D}}^2} = \frac{{A{{\rm{D}}^2}}}{2} = \frac{{A{\rm{D}}.2C{\rm{D}}}}{2} = A{\rm{D}}.C{\rm{D}}\)

\( \Rightarrow \frac{{B{\rm{D}}}}{{A{\rm{D}}}} = \frac{{C{\rm{D}}}}{{B{\rm{D}}}}\)

Xét tam giác DBC và tam giác DAB có

\(\frac{{B{\rm{D}}}}{{A{\rm{D}}}} = \frac{{C{\rm{D}}}}{{B{\rm{D}}}}\) (chứng minh trên);

\(\widehat {A{\rm{D}}B}\) là góc chung

 (c.g.c)

\( \Rightarrow \widehat {{\rm{D}}BC} = \widehat {DAB}\) (hai góc tương ứng)

Ta có CO ⊥ AD, BD ⊥ AD

Nên CO // BD (quan hệ từ vuông góc đến song song)

\( \Rightarrow \widehat {{\rm{D}}BC} = \widehat {BCO}\) (hai góc so le trong)

Mà \(\widehat {{\rm{D}}BC} = \widehat {DAB}\) (chứng minh trên)

\( \Rightarrow \widehat {{\rm{DA}}B} = \widehat {BCO}\)

Vì SC = SO nên tam giác SCO cân tại S \( \Rightarrow \widehat {SCO} = \widehat {SOC}\)

Vì tam giác ACO vuông tại C nên

\(\widehat {CAO} + \widehat {COA} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Mà \(\widehat {SCO} = \widehat {SOC}\), \(\widehat {{\rm{DA}}B} = \widehat {BCO}\)

\( \Rightarrow \widehat {BCO} + \widehat {SCO} = 90^\circ \), hay \(\widehat {BC{\rm{S}}} = 90^\circ \)

Do đó SC ⊥ CB

Xét (S) có SC ⊥ CB

Suy ra BC là tiếp tuyến của (S).

d) Xét tam giác SCO có \(\widehat {SCO} + \widehat {SOC} + \widehat {C{\rm{S}}O} = 180^\circ \) (tổng 3 góc trong một tam giác)

Mà \(\widehat {SCO} = \widehat {SOC}\)

\( \Rightarrow \widehat {C{\rm{S}}O} = 180^\circ - 2\widehat {SOC}\)                               (1)

Vì OB = OD nên tam giác OBD cân tại O

\( \Rightarrow \widehat {BDO} = \widehat {OB{\rm{D}}}\)

Xét tam giác BDO có \(\widehat {B{\rm{D}}O} + \widehat {BOD} + \widehat {OB{\rm{D}}} = 180^\circ \) (tổng 3 góc trong một tam giác)

Mà \(\widehat {BDO} = \widehat {OB{\rm{D}}}\)

\( \Rightarrow \widehat {BOD} = 180^\circ - 2\widehat {OB{\rm{D}}}\)                                             (2)

Vì OC // BD nên \(\widehat {OB{\rm{D}}} = \widehat {SOC}\)                                      (3)

Từ (1) , (2) và (3) ta có \(\widehat {BO{\rm{D}}} = \widehat {OSC}\)

Mà hai góc này ở vị trí đồng vị

Þ OD // SC

Mà SC ⊥ CB

Þ OD ⊥ CB (quan hệ từ vuông góc đến song song)

Xét tam giác BCD có DE ⊥ CB

Nên DE . CB = CD . BD

Suy ra \[DE = \frac{{C{\rm{D}}.B{\rm{D}}}}\]

Vì tam giác OHD vuông tại H nên theo định lý Pytago có

\[{\rm{D}}H = \sqrt {O{{\rm{D}}^2} - O{H^2}} = \sqrt {{R^2} - {{\left( {\frac{1}{3}R} \right)}^2}} = \frac{{\sqrt 8 R}}{3}\]

Vì tam giác BHD vuông tại H nên theo định lý Pytago có

\[{\rm{DB}} = \sqrt {{\rm{H}}{{\rm{D}}^2} + B{H^2}} = \sqrt {{{\left( {\frac{{\sqrt 8 R}}{3}} \right)}^2} + {{\left( {\frac{2}{3}R} \right)}^2}}  = \frac{{\sqrt {12} R}}{3}\]

Vì tam giác ABD vuông tại D nên theo định lý Pytago có

\[{\rm{AD}} = \sqrt {A{B^2} - B{D^2}} = \sqrt {{{\left( {2R} \right)}^2} - {{\left( {\frac{{\sqrt {12} }}{3}R} \right)}^2}} = \frac{{2\sqrt 6 R}}{3}\]

Suy ra \[{\rm{CD}} = \frac{1}{2}{\rm{AD}} = \frac{{\sqrt 6 R}}{3}\]

Vì tam giác BCD vuông tại D nên theo định lý Pytago có

\[{\rm{CB}} = \sqrt {{\rm{C}}{{\rm{D}}^2} + B{D^2}} = \sqrt {{{\left( {\frac{{\sqrt 6 R}}{3}} \right)}^2} + {{\left( {\frac{{\sqrt {12} }}{3}R} \right)}^2}} = \sqrt 2 R\]

Suy ra \[DE = \frac{{C{\rm{D}}.B{\rm{D}}}} = \frac{{\frac{{\sqrt 6 R}}{3}.\frac{{\sqrt {12} R}}{3}}}{{\sqrt 2 R}} = \frac{3}\]

Kẻ EI ⊥ AB

Mà DH ⊥ AB nên EI // DH

Suy ra \(\frac = \frac\)

Do đó \(\frac = \frac{{O{\rm{D}} - OE}} = \frac{{E{\rm{D}}}}\)

Suy ra \(\frac{{\frac{{\sqrt 8 R}}{3}}}{{\frac{{\sqrt 8 R}}{3} - EI}} = \frac{R}{{\frac{3}}}\)

Do đó \[{\rm{EI = }}\frac{{\sqrt 8 R}}{9}\]

Ta có \[{{\rm{S}}_{A{\rm{E}}B}} = \frac{1}{2}EI.AB = \frac{1}{2}\frac{{\sqrt 8 R}}{9}.2{\rm{R = }}\frac{{\sqrt 8 {R^2}}}{9}\].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư