Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O; R). Vẽ AH vuông góc với BC. Từ H vẽ HM vuông góc với AB và HN vuông góc với AC (H ∈ BC, M ∈ AB, N ∈ AC). Vẽ đường kính AE cắt MN tại I, tia MN cắt đường tròn (O; R) tại K
a) Chứng minh tứ giác AMHN nội tiếp.
b) Chứng minh AE vuông góc với MN.
c) Chứng minh AH = AK.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Vì HM ⊥ AB, HN ⊥ AC
Nên \(\widehat {HMA} = \widehat {HNA} = 90^\circ \)
Xét tứ giác AMHN có
\(\widehat {HMA} + \widehat {HNA} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra tứ giác AMHN nội tiếp đường tròn đường kính AH
b) Dựng Ax là tiếp tuyến của (O) nên Ax ⊥ AE
Xét (O) có \(\widehat {xAB},\widehat {ACB}\) là góc tạo bởi tiếp tuyến và dây cung, góc nội tiếp cũng chắn cung AB
Suy ra \(\widehat {xAB} = \widehat {ACB}\) (1)
Vì tam giác HNC vuông ở N nên \(\widehat {NHC} + \widehat {NCH} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {NHC} + \widehat {NHA} = \widehat {AHC} = 90^\circ \)
Suy ra \(\widehat {AHN} = \widehat {NCH}\) (2)
Xét đường tròn đường kính AH có \(\widehat {AMN},\widehat {AHN}\) là hai góc nội tiếp chắn cung AN
Suy ra \(\widehat {AMN} = \widehat {AHN}\) (3)
Từ (1), (2) và (3) suy ra \(\widehat {xAB} = \widehat {AMN}\)
Mà hai góc này ở vị trí so le trong
Suy ra Ax // MN
Mà Ax ⊥ AE
Do đó MN ⊥ AE
c) Vì tam giác ACE nội tiếp (O) đường kính AE
Nên tam giác ACE vuông ở C
Hay \(\widehat {AC{\rm{E}}} = 90^\circ \)
Xét tam giác AHC vuông ở H có HN ⊥ AC nên AC . AN = AH2 (hệ thức lượng trong tam giác vuông)
Xét △AIN và △ACE có
\(\widehat {CA{\rm{E}}}\) là góc chung
\(\widehat {AIN} = \widehat {AC{\rm{E}}}\left( { = 90^\circ } \right)\)
Do đó (g.g)
Suy ra \(\frac = \frac{{A{\rm{E}}}}\)
Do đó AI . AE = AC . AN = AH2
Vì tam giác AKE nội tiếp (O) đường kính AE
Nên tam giác AKE vuông ở K
Lại có KI ⊥ AE
Nên AK2 = AI . AE (hệ thức lượng trong tam giác vuông)
Mà AI . AE = AH2 (chứng minh trên)
Suy ra AH = AK
Vậy AH = AK.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |