Bài tập  /  Bài đang cần trả lời

Xét tính đúng sai của các mệnh đề sau

Giải hộ mình chắc câu 2d với ạ
----- Nội dung ảnh -----
Câu 2. Cho biểu thức P(n) = 9n² - 6n - 8 với n ∈ ℕ.
a) Ta có P(7) có giá trị là số lẻ.
b) Ta có P(4) + 2024 có giá trị là số nguyên tố.
c) Ta có P(7n) > P(n) - 25 với n = 4.
d) Không tồn tại số tự nhiên n để biểu thức \(\frac{P(n) + 1}{n - 5}\) có giá trị nguyên.
2 trả lời
Hỏi chi tiết
20
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để xét tính đúng sai của các mệnh đề với biểu thức \( P(n) = 9n^2 - 6n - 8 \) (với \( n \in \mathbb{N} \)), ta sẽ kiểm tra từng mệnh đề một.

### a) Ta có \( P(7) \) có giá trị là số lẻ.
Tính giá trị của \( P(7) \):
\[
P(7) = 9(7^2) - 6(7) - 8 = 9(49) - 42 - 8 = 441 - 42 - 8 = 391.
\]
Kết quả là \( 391 \), số lẻ. Mệnh đề này **đúng**.

### b) Ta có \( P(4) + 2024 \) có giá trị là số nguyên tố.
Tính giá trị của \( P(4) \):
\[
P(4) = 9(4^2) - 6(4) - 8 = 9(16) - 24 - 8 = 144 - 24 - 8 = 112.
\]
Vậy \( P(4) + 2024 = 112 + 2024 = 2136 \).
Số 2136 là số chẵn và lớn hơn 2, do đó không thể là số nguyên tố. Mệnh đề này **sai**.

### c) Ta có \( P(7n) > P(n) - 25 \) với \( n = 4 \).
Tính \( P(7n) \) và \( P(n) \) với \( n = 4 \):
\[
P(28) = 9(28^2) - 6(28) - 8 = 9(784) - 168 - 8 = 7056 - 168 - 8 = 6880.
\]
\[
P(4) = 112 \quad \text{(tính ở phần b)}
\]
Vậy ta cần so sánh:
\[
P(7n) = 6880 \quad \text{với} \quad P(4) - 25 = 112 - 25 = 87.
\]
Rõ ràng \( 6880 > 87 \). Mệnh đề này **đúng**.

### d) Không tồn tại số tự nhiên \( n \) để biểu thức \( \frac{P(n) + 1}{n - 5} \) có giá trị nguyên.
Để biểu thức này có giá trị nguyên, \( P(n) + 1 \) phải chia hết cho \( n - 5 \). Xét \( P(n) + 1 = 9n^2 - 6n - 8 + 1 = 9n^2 - 6n - 7 \).

Ta kiểm tra \( n = 6 \):
\[
P(6) + 1 = 9(6^2) - 6(6) - 7 = 9(36) - 36 - 7 = 324 - 36 - 7 = 281.
\]
Và \( n - 5 = 1 \) (nguyên). Vậy tồn tại \( n = 6 \) làm biểu thức có giá trị nguyên. Mệnh đề này **sai**.

### Kết luận:
- a) Đúng
- b) Sai
- c) Đúng
- d) Sai
1
0
Ngọc
hôm qua
+5đ tặng
a) Kiểm tra P(7):
Thay n = 7 vào biểu thức P(n), ta được: P(7) = 97² - 67 - 8 = 441 - 42 - 8 = 391
391 là số lẻ.
Vậy mệnh đề a) đúng.
b) Kiểm tra P(4) + 2024:
Thay n = 4 vào biểu thức P(n), ta được: P(4) = 94² - 64 - 8 = 144 - 24 - 8 = 112
P(4) + 2024 = 112 + 2024 = 2136
2136 chia hết cho 2 và lớn hơn 2 nên không phải là số nguyên tố.
Vậy mệnh đề b) sai.
 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
+4đ tặng
Đáp án
Kiểm tra các mệnh đề:
 
(a) Ta có P(7) có giá trị là số lẻ.
 
Thay n = 7 vào biểu thức P(n), ta được:
    * P(7) = 9 * 7² - 6 * 7 - 8 = 343 - 42 - 8 = 293
* 293 là số lẻ.
 
Vậy mệnh đề (a) đúng.
 
(b) Ta có P(4) + 2024 có giá trị là số nguyên tố.
 
* Thay n = 4 vào biểu thức P(n), ta được:
    * P(4) = 9 * 4² - 6 * 4 - 8 = 144 - 24 - 8 = 112
* P(4) + 2024 = 112 + 2024 = 2136
* 2136 chia hết cho 2 và 4, không phải số nguyên tố.
 
Vậy mệnh đề (b) sai.
 
(c) Ta có P(7n) > P(n) - 25 với n = 4.
 
* Thay n = 4 vào biểu thức P(n), ta được:
    * P(4) = 9 * 4² - 6 * 4 - 8 = 112
* Thay n = 4 vào biểu thức P(7n), ta được:
    * P(7 * 4) = P(28) = 9 * 28² - 6 * 28 - 8 = 6720
* P(28) > P(4) - 25 (6720 > 112 - 25)
 
Vậy mệnh đề (c) đúng.
 
(d) Không tồn tại số tự nhiên n để biểu thức (P(n) + 1) / (n - 5) có giá trị nguyên.
 
* Để biểu thức (P(n) + 1) / (n - 5) có giá trị nguyên, thì P(n) + 1 phải chia hết cho n - 5.
* Ta có:
    * P(n) + 1 = 9n² - 6n - 7
    * (9n² - 6n - 7) / (n - 5) = 9n + 39 + (178) / (n - 5)
* Để biểu thức có giá trị nguyên, thì 178 phải chia hết cho n - 5.
* Các ước của 178 là: 1, 2, 89, 178.
* Từ đó, ta có các giá trị của n: 6, 7, 94, 183.
* Tuy nhiên, n = 6, 7, 94, 183 đều không thỏa mãn điều kiện n là số tự nhiên.
 
Vậy mệnh đề (d) đúng.
 
Kết luận:
 
Mệnh đề (a) và (c) đúng.
Mệnh đề (b) và (d) sai.
 
Đặng Mỹ Duyên
Chấm được khum cậu

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư