Bài tập  /  Bài đang cần trả lời

Bài 57 trang 63 SGK Toán 9 tập 2

1 trả lời
Hỏi chi tiết
616
0
0
Bạch Tuyết
12/12/2017 01:51:25
Bài 57. Giải các phương trình:
a) \(5{{\rm{x}}^2} - 3{\rm{x}} + 1 = 2{\rm{x}} + 11\)                     
b) \({{{x^2}} \over 5} - {{2{\rm{x}}} \over 3} = = } \over {{x^2} - 2{\rm{x}}}}\)                            
d) \( + 1}} = {{7{\rm{x}} + 2} \over {9{{\rm{x}}^2} - 1}}\) 
e) \(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\)              
f) \({x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right)\)
Hướng dẫn làm bài:
a)
\(\eqalign{
& 5{{\rm{x}}^2} - 3{\rm{x}} + 1 = 2{\rm{x}} + 11 \cr
& \Leftrightarrow 5{{\rm{x}}^2} - 5{\rm{x}} - 10 = 0 \cr
& \Leftrightarrow {x^2} - x - 2 = 0 \cr}\)
Phương trình có \(a – b + c = 1 + 1 – 2 = 0\) nên có 2 nghiệm \({x_1}= -1; {x_2}= 2\)
b)
\(\eqalign{
& {{{x^2}} \over 5} - {{2{\rm{x}}} \over 3} = ^2} - 20{\rm{x}} = 5{\rm{x}} + 25 \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 25{\rm{x}} - 25 = 0 \cr
& \Delta = {25^2} + 4.6.25 = 1225 \cr
& \sqrt \Delta = 35 \Rightarrow {x_1} = 5;{x_2} = - {5 \over 6} \cr} \)
c) \({x \over {x - 2}} = } \over {{x^2} - 2{\rm{x}}}}\)  ĐKXĐ: \(x ≠ 0; x ≠ 2\)
\(\eqalign{
& \Leftrightarrow {x^2} = 10 - 2{\rm{x}} \cr
& \Leftrightarrow {x^2} + 2{\rm{x}} - 10 = 0 \cr
& \Delta ' = 1 + 10 = 11 \cr
& \Rightarrow {x_1} = - 1 + \sqrt {11} (TM) \cr
& {x_2} = - 1 - \sqrt {11} (TM) \cr} \)
d) \( + 1}} = {{7{\rm{x}} + 2} \over {9{{\rm{x}}^2} - 1}}\) ĐKXĐ: \(x \ne  \pm {1 \over 3}\)
\(\eqalign{
& \Leftrightarrow {{2{\rm{x}} + 1} \over {3{\rm{x}} + 1}} = {{14{\rm{x}} + 4} \over {9{{\rm{x}}^2} - 1}} \cr
& \Leftrightarrow \left( {2{\rm{x}} + 1} \right)\left( {3{\rm{x}} - 1} \right) = 14{\rm{x}} + 4 \cr
& \Leftrightarrow 6{{\rm{x}}^2} + x - 1 = 14{\rm{x}} + 4 \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 13{\rm{x}} - 5 = 0 \cr
& \Delta = {( - 13)^2} - 4.6.( - 5) = 289 \cr
& \sqrt \Delta = \sqrt {289} = 17 \cr
& \Rightarrow {x_1} = {5 \over 2}(TM) \cr
& {x_2} = - {1 \over 3}(loại) \cr} \)
e)
\(\eqalign{
& 2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right) \cr
& \Leftrightarrow 2\sqrt 3 {x^2} - \left( {\sqrt 3 - 1} \right)x + 1 - \sqrt 3 = 0 \cr
& \Delta = {\left( {\sqrt 3 - 1} \right)^2} - 8\sqrt 3 \left( {1 - \sqrt 3 } \right) \cr
& = 15 - 2.5.\sqrt 3 + 3 = {\left( {5 - \sqrt 3 } \right)^2} \cr
& \sqrt \Delta = \sqrt {{{\left( {5 - \sqrt 3 } \right)}^2}} = 5 - \sqrt 3 \cr
& \Rightarrow {x_1} = {{\sqrt 3 - 1 + 5 - \sqrt 3 } \over {4\sqrt 3 }} = {{\sqrt 3 } \over 3} \cr
& {x_2} = {{\sqrt 3 - 1 - 5 + \sqrt 3 } \over {4\sqrt 3 }} =

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo