Bài tập  /  Bài đang cần trả lời

F(n) is defined as the exponent of the largest power of 2 that divides n

f(n) is defined as the exponent of the largest power of 2 that divides n .
Ex: f(40)=3, f(20)=2^3 x.5 .What is the value of f(n) given that N=1x2x3x...x2022x2023
1 trả lời
Hỏi chi tiết
65
Tham khảo câu trả lời từ Trợ lý ảo Lazi
We can write N as N = 2^a x 3^b x 5^c x ... where a, b, c, ... are the exponents of 2, 3, 5, ... in the prime factorization of N.

To find f(N), we just need to find the value of a.

Since N is the product of all integers from 1 to 2023, it contains all the prime factors up to 2023. We can count the number of factors of 2 in N by counting the number of multiples of 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and 2048 in the product. There are:

- 2023/2 = 1011 multiples of 2
- 2023/4 = 507 multiples of 4
- 2023/8 = 253 multiples of 8
- 2023/16 = 126 multiples of 16
- 2023/32 = 63 multiples of 32
- 2023/64 = 31 multiples of 64
- 2023/128 = 15 multiples of 128
- 2023/256 = 7 multiples of 256
- 2023/512 = 3 multiples of 512
- 2023/1024 = 1 multiple of 1024
- 2023/2048 = 0 multiples of 2048

Adding these up, we get:

1011 + 507 + 253 + 126 + 63 + 31 + 15 + 7 + 3 + 1 + 0 = 2017

So f(N) = a = 2017.
1
0
Phương
17/06/2023 11:51:51
+5đ tặng

To find f(n), we need to find the exponent of the largest power of 2 that divides n. We can do this by finding the number of factors of 2 in the prime factorization of n.

We know that every even number has at least one factor of 2, and every multiple of 4 has at least two factors of 2. Similarly, every multiple of 8 has at least three factors of 2, and so on. So, to find the number of factors of 2 in the prime factorization of n, we can count the number of multiples of 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and 2048 that divide n.

Let's consider each of these powers of 2 in turn:

  • Multiples of 2: There are 1011 multiples of 2 between 1 and 2022, and each of them contributes one factor of 2 to the prime factorization of n.
  • Multiples of 4: There are 505 multiples of 4 between 1 and 2022, and each of them contributes an additional factor of 2 to the prime factorization of n.
  • Multiples of 8: There are 252 multiples of 8 between 1 and 2022, and each of them contributes another factor of 2 to the prime factorization of n.
  • Multiples of 16: There are 126 multiples of 16 between 1 and 2022, and each of them contributes yet another factor of 2 to the prime factorization of n.
  • Multiples of 32: There are 63 multiples of 32 between 1 and 2022, and each of them contributes still another factor of 2 to the prime factorization of n.
  • Multiples of 64: There are 31 multiples of 64 between 1 and 2022, and each of them contributes another factor of 2 to the prime factorization of n.
  • Multiples of 128: There are 15 multiples of 128 between 1 and 2022, and each of them contributes yet another factor of 2 to the prime factorization of n.
  • Multiples of 256: There are 7 multiples of 256 between 1 and 2022, and each of them contributes another factor of 2 to the prime factorization of n.
  • Multiples of 512: There are 3 multiples of 512 between 1 and 2022, and each of them contributes another factor of 2 to the prime factorization of n.
  • Multiples of 1024: There is 1 multiple of 1024 between 1 and 2022, and it contributes yet another factor of 2 to the prime factorization of n.
  • Multiples of 2048: There are no multiples of 2048 between 1 and 2022, so they do not contribute any additional factors of 2 to the prime factorization of n.

Adding up all these factors, we get:

f(n) = 1011 + 505 + 252 + 126 + 63 + 31 + 15 + 7 + 3 + 1
= 2014

Therefore, the value of f(n) for N=1x2x3x…x2022x2023 is 2014.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư