LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho ∆ ABC vuông tại A có AB = 3 cm, AC = 4 cm. a) Giải ∆ABC. b) Gọi I là trung điểm của BC, vẽ AH ⊥ BC. Tính AH, AI. c) Qua A kẻ đường thẳng vuông góc với AI. Đường thẳng vuông góc với BC tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm N. Chứng minh \[MB\,\,.\,NC = \frac{{B{C^2}}}{4}\].

Cho ∆ ABC vuông tại A có AB = 3 cm, AC = 4 cm.

a) Giải ∆ABC.

b) Gọi I là trung điểm của BC, vẽ AH ⊥ BC. Tính AH, AI.

c) Qua A kẻ đường thẳng vuông góc với AI. Đường thẳng vuông góc với BC tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm N. Chứng minh \[MB\,\,.\,NC = \frac{{B{C^2}}}{4}\].

1 trả lời
Hỏi chi tiết
17
0
0
Tôi yêu Việt Nam
10/09 22:39:06

Lời giải

Áp dụng định lý Py-ta-go vào ∆ABC vuông tại A, ta có:

BC = \[\sqrt {A{B^2} + A{C^2}} = 5\] (cm)

sin\[\widehat B\] = \[\frac = \frac{4}{5}\] ⇒ \[\widehat B \approx 53^\circ \]

\[\widehat C = 90^\circ - \widehat B = 37^\circ \]

b) Vì AI là trung tuyến ứng ch BC nên AI = \[\frac{1}{2}\]BC = 2,5 (cm)

AH. BC = AB . AC ⇒ AH = \[\frac = \frac{5}\](cm)

c) Xét ∆AMI và ∆BMI có:

IA = IB

\[\widehat {IAM} = \widehat {IAM} = 90^\circ \]

IM chung

Do đó ∆AMI = ∆BMI (cạnh huyền – góc vuông)

Suy ra \[\left\{ \begin{array}{l}MA = MB\\\widehat {AIM} = \widehat {BIM}\end{array} \right.\]  (các cạnh và các góc tương ứng).

Do đó IN là phân giác của \[\widehat {AIC}\].

Do \[\widehat {AIB} + \widehat {AIC}\]= 180° nên IM ⊥ IN.

Suy ra ∆IMN vuông tại I.

Mà IA ⊥ MN

Do đó MB . NC = AM . AN = IA2 = \[{\left( {\frac{2}} \right)^2} = \frac{{B{C^2}}}{4}\]

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư