Cho đường tròn (O; R), đường kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) tại M.
1) Chứng minh rằng A, P, M, O cùng thuộc một đường tròn.
2) Chứng minh BM song song với OP.
3) Đường thẳng vuông góc với AB ở O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.
4) Biết AN cắt OP tại K, PM cắt ON tại I; PN và OM kéo dài cắt nhau tại J. Chứng minh I, J, K thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
1) Ta có: AP, MP là hai tiếp tuyến của đường tròn (O).
Suy ra \(\widehat {PAO} = 90^\circ \) và \(\widehat {PMO} = 90^\circ \).
Khi đó \(\widehat {PAO} + \widehat {PMO} = 90^\circ + 90^\circ = 180^\circ \).
Vậy bốn điểm A, P, M, O cùng thuộc đường tròn đường kính PO.
2) Ta có \(\widehat {ABM} = \frac{{\widehat {AOM}}}{2}\) (góc nội tiếp và góc ở tâm).
Mà \(\widehat {AOP} = \frac{{\widehat {AOM}}}{2}\) (tính chất hai tiếp tuyến cắt nhau).
Suy ra \(\widehat {ABM} = \widehat {AOP}\).
Mà hai góc này ở vị trí đồng vị.
Vậy BM // OP.
3) Xét ∆AOP và ∆OBN, có:
\(\widehat {PAO} = \widehat {NOB} = 90^\circ \);
AO = OB (= R);
\(\widehat {ABM} = \widehat {AOP}\) (chứng minh trên).
Do đó ∆AOP = ∆OBN (g.c.g).
Suy ra OP = BN (cặp cạnh tương ứng).
Mà BN // OP (chứng minh trên).
Vậy tứ giác OBNP là hình bình hành.
4) Ta có PN // OB (OBNP là hình bình hành).
Suy ra \(\widehat {PNO} = \widehat {NOB} = 90^\circ \) (cặp góc so le trong).
Lại có \(\widehat {PAO} = \widehat {NOA} = 90^\circ \).
Do đó tứ giác AONP là hình chữ nhật.
Suy ra AP // ON.
Khi đó \(\widehat {APO} = \widehat {PON}\) (cặp góc so le trong).
Mà \(\widehat {APO} = \widehat {MPO}\) (tính chất hai tiếp tuyến cắt nhau).
Suy ra \(\widehat {PON} = \widehat {MPO}\).
Do đó tam giác IPO cân tại I.
Mà K là trung điểm PO (AONP là hình chữ nhật).
Nên IK vừa là đường trung tuyến, vừa là đường cao của tam giác IPO.
Suy ra IK ⊥ PO (1)
Tam giác POJ có các đường cao PM, ON cắt nhau tại I.
Suy ra I là trực tâm của tam giác POJ.
Do đó IJ ⊥ PO (2)
Từ (1), (2), suy ra ba điểm I, J, K thẳng hàng.
Vậy ta có điều phải chứng minh.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |