Cho tam giác ABC. Chứng minh rằng:
a) \(\cos \frac{A}{2} = \sqrt {\frac{{p\left( {p - a} \right)}}} \).
b) R ≥ 2r.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Ta có \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}\)
\( \Leftrightarrow 2{\cos ^2}\frac{A}{2} - 1 = \frac{{{b^2} + {c^2} - {a^2}}}\)
\( \Leftrightarrow 2{\cos ^2}\frac{A}{2} = \frac{{{b^2} + {c^2} + 2bc - {a^2}}}\)
\( \Leftrightarrow 2{\cos ^2}\frac{A}{2} = \frac{{{{\left( {b + c} \right)}^2} - {a^2}}}\)
\( \Leftrightarrow {\cos ^2}\frac{A}{2} = \frac{{\left( {b + c - a} \right)\left( {b + c + a} \right)}}\)
\( \Leftrightarrow {\cos ^2}\frac{A}{2} = \frac{{4\left( {\frac{2} - a} \right)\left( {\frac{2}} \right)}}\)
\( \Leftrightarrow {\cos ^2}\frac{A}{2} = \frac{{4\left( {p - a} \right)p}}\).
Suy ra \( \Leftrightarrow \cos \frac{A}{2} = \sqrt {\frac{{4\left( {p - a} \right)p}}} = \sqrt {\frac{{p\left( {p - a} \right)}}} \).
Vậy ta có điều phải chứng minh.
b) Ta có \(R = \frac;\,S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) và \(r = \frac{S}{p} = \frac\).
Ta có \(R \ge 2r \Leftrightarrow \frac \ge \frac\)
⇔ abc(a + b + c) ≥ 16S2
⇔ abc(a + b + c) ≥ 16.p(p – a)(p – b)(p – c)
\( \Leftrightarrow abc\left( {a + b + c} \right) \ge 16.\frac{2}\left( {\frac{2} - a} \right)\left( {\frac{2} - b} \right)\left( {\frac{2} - c} \right)\)
\( \Leftrightarrow abc\left( {a + b + c} \right) \ge 16.\frac{2}\left( {\frac{2}} \right)\left( {\frac{2}} \right)\left( {\frac{2}} \right)\)
⇔ abc(a + b + c) ≥ (a + b + c)(b + c – a)(a + c – b)(a + b – c)
⇔ abc ≥ (b + c – a)(a + c – b)(a + b – c) (*)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\sqrt {\left( {b + c - a} \right)\left( {a + c - b} \right)} \le \frac{2} = c\) (1)
Chứng minh tương tự, ta được:
⦁ \(\sqrt {\left( {b + c - a} \right)\left( {a + b - c} \right)} \le b\) (2)
⦁ \(\sqrt {\left( {a + c - b} \right)\left( {a + b - c} \right)} \le a\) (3)
Từ (1), (2), (3), suy ra (b + c – a)(a + c – b)(a + b – c) ≤ abc.
Dấu “=” xảy ra ⇔ a = b = c.
Do đó (*) đúng.
Vậy ta có điều phải chứng minh.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |