Trong lớp 10C có 16 học sinh giỏi Toán, 15 học sinh giỏi Lí, 11 học sinh giỏi Hóa. Biết rằng có 9 học sinh vừa giỏi Toán và Lí, 6 học sinh vừa giỏi Lí và Hóa, 8 học sinh vừa giỏi Hóa và Toán, trong đó có 11 học sinh giỏi đúng 2 môn. Hỏi có bao nhiêu học sinh trong lớp:
a) Giỏi cả ba môn.
b) Giỏi đúng 1 môn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Gọi A là tập hợp số học sinh giỏi Toán. Tức là, n(A) = 16.
B là tập hợp số học sinh giỏi Lí. Tức là, n(B) = 15.
C là tập hợp số học sinh giỏi Hóa. Tức là, n(C) = 11.
Có 9 học sinh vừa giỏi Toán và Lí. Suy ra n(A ∩ B) = 9.
Có 6 học sinh vừa giỏi Lí và Hóa. Suy ra n(B ∩ C) = 6.
Có 8 học sinh vừa giỏi Hóa và Toán. Suy ra n(A ∩ C) = 8.
Ta có sơ đồ Ven:
Vì có 11 học sinh chỉ giỏi đúng 2 môn nên ta có:
n(A ∩ B) + n(B ∩ C) + n(C ∩ A) – 3.n(A ∩ B ∩ C) = 11.
⇒ 9 + 6 + 8 – 3.n(A ∩ B ∩ C) = 11.
⇔ n(A ∩ B ∩ C) = 4.
Vậy có 4 học sinh trong lớp 10C giỏi cả ba môn.
b) Xét tổng n(A) + n(B) + n(C), có:
⦁ n(A ∩ B) + n(B ∩ C) + n(A ∩ C) được tính 2 lần nên ta phải trừ đi 1 lần;
⦁ n(A ∩ B ∩ C) được tính 3 lần nên ta phải trừ đi 2 lần.
Trong n(A ∩ B) + n(B ∩ C) + n(A ∩ C), có n(A ∩ B ∩ C) được tính 3 lần, trừ đi 1 lần n(A ∩ B) + n(B ∩ C) + n(A ∩ C) là trừ đi 3 lần n(A ∩ B ∩ C).
Như vậy, số học sinh chỉ giỏi một môn là:
n(A ∪ B ∪ C)
= n(A) + n(B) + n(C) – [n(A ∩ B) + n(A ∩ C) + n(B ∩ C)] + n(A ∩ B ∩ C).
= 16 + 15 + 11 – (9 + 8 + 6) + 4 = 23.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |