Số nghiệm của phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn [0; π] là:
A. 4.
B. 1.
C. 2.
D. 3.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án đúng là: C
Cách 1. Giải phương trình lượng giác:
Ta có:
\(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\)
\( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \frac{\pi }{4}\)
\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = \pi - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x = \frac{\pi }{2} + k2\pi \,\,\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\]
• Do x ∈ [0; π] nên từ (1) ta có: 0 ≤ k2π ≤ π
Û 0 ≤ 2k ≤ 1
\( \Leftrightarrow 0 \le k \le \frac{1}{2}\)
Mà k ∈ ℤ nên k = 0, khi đó ta tìm được 1 giá trị của x (x = 0) trong trường hợp này.
• Do x ∈ [0; π] nên từ (2) ta có: \[0 \le \frac{\pi }{2} + k2\pi \le \pi \]
\[ \Leftrightarrow 0 \le \frac{1}{2} + 2k \le 1\]
\[ \Leftrightarrow - \frac{1}{2} \le 2k \le \frac{1}{2} \Leftrightarrow - \frac{1}{4} \le k \le \frac{1}{4}\]
Mà k ∈ ℤ nên k = 0, khi đó ta tìm được 1 giá trị của x \(\left( {x = \frac{\pi }{2}} \right)\) trong trường hợp này.
Vậy phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) có hai nghiệm trên đoạn [0; π].
Cách 2. Dùng đồ thị hàm số
Đặt \(x + \frac{\pi }{4} = \alpha \). Khi đó ta có phương trình \(\sin \alpha = \frac{{\sqrt 2 }}{2}\).
Xét đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) và đồ thị hàm số y = sinα trên đoạn [0; π]:
Từ đồ thị hàm số trên ta thấy đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) cắt đồ thị số y = sinα trên đoạn [0; π] tại hai điểm có hoành độ lần lượt là \({\alpha _1} = \frac{\pi }{4}\) và \({\alpha _2} = \frac{{3\pi }}{4}\).
Mà \(x + \frac{\pi }{4} = \alpha \), khi đó ta sẽ tìm được 2 giá trị x là x1 = 0 và \({x_2} = \frac{\pi }{2}\).
Vậy phương trình \(\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) có hai nghiệm trên đoạn [0; π].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |