Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:
a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.
b) AM = AN.
c) AI vuông góc với BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét △ABI và △ACI có
AI là cạnh chung
AB = AC (giả thiết)
BI = CI (giả thiết)
Suy ra △ABI = △ACI (c.c.c)
Do đó \(\widehat {ABI} = \widehat {ACI}\), \(\widehat {BAI} = \widehat {CAI}\) (các góc tương ứng)
Suy ra AI là tia phân giác của góc BAC
b) Ta có \(\widehat {ABI} + \widehat {ABM} = 180^\circ \) (hai góc kề bù)
\(\widehat {ACI} + \widehat {ACN} = 180^\circ \) (hai góc kề bù)
Mà \(\widehat {ABI} = \widehat {ACI}\)(chứng minh câu a)
Suy ra \(\widehat {ABM} = \widehat {ACN}\)
Xét △ABM và △ACN có
AB = AC (giả thiết)
\(\widehat {ABM} = \widehat {ACN}\) (chứng minh trên)
BM = CN (giả thiết)
Suy ra △ABM = △ACN (c.g.c)
Do đó AM = AN (hai cạnh tương ứng)
c) Vì △ABI = △ACI (chứng minh câu a)
Nên \(\widehat {AIB} = \widehat {AIC}\)(hai góc tương ứng)
Mà \(\widehat {AIB} + \widehat {AIC} = 180^\circ \)(hai góc kề bù)
Suy ra \(\widehat {AIB} = \widehat {AIC} = 90^\circ \)
Hay AI ⊥ BC
Vậy AI ⊥ BC.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |