----- Nội dung ảnh ----- Bài 3: Rút gọn biểu thức sau: BT VN 1) \((2x+1)^2 + (2x-1)^2\) 2) \(-(x+1)^2\) 3) \((x+2y)^2 - (x-2y)^2\) 4) \((3x+y)^2 + (-x-y)^2\) 5) \(-(x+5)^2 - (x-3)^2\) 6) \((3x-2)^2 - (3x-1)^2\) 7) \((x-4y)^2 + (x+4y)^2\) 8) \(- (2x+3)^2 - (5x-3)^2\) 9) \(-2x+3)^2 - (5x-3)^2\) 10) \((2x+1)^2 - (3x-1)^2\) 11) \(-(x-y)^2 - (2x+y)^2\) 12) \(-(x+1)^2 + (x-1)^2\) 13) \((2x+7)^2 + (-2x-3)^2\) 14) \(-(2x-y)^2 - (x+3y)^2\) 15) \((2x+7)^2 - (-2x-3y)^2\)
0 trả lời
22 Tham khảo câu trả lời từ Trợ lý ảo Lazi Dưới đây là cách rút gọn các biểu thức trong bài toán: 1) \( (2x + 1)^2 + (2x - 1)^2 \) \[ = (4x^2 + 4x + 1) + (4x^2 - 4x + 1) = 8x^2 + 2 \] 2) \( - (x + 1)^2 - (x - 1)^2 \) \[ = - [(x^2 + 2x + 1) + (x^2 - 2x + 1)] = - (2x^2 + 2) = -2x^2 - 2 \] 3) \( (x + 2y)^2 - (x - 2y)^2 \) \[ = (x^2 + 4xy + 4y^2) - (x^2 - 4xy + 4y^2) = 8xy \] 4) \( (3x + y)^2 + (x - y)^2 \) \[ = (9x^2 + 6xy + y^2) + (x^2 - 2xy + y^2) = 10x^2 + 4xy + 2y^2 \] 5) \( - (x + 5)^2 - (x - 3)^2 \) \[ = - [(x^2 + 10x + 25) + (x^2 - 6x + 9)] = - (2x^2 + 4x + 34) = -2x^2 - 4x - 34 \] 6) \( (3x - 2)^2 - (3x - 3)^2 \) \[ = (9x^2 - 12x + 4) - (9x^2 - 18x + 9) = 6x - 5 \] 7) \( (x - 4y)^2 + (x + 4y)^2 \) \[ = (x^2 - 8xy + 16y^2) + (x^2 + 8xy + 16y^2) = 2x^2 + 32y^2 \] 8) \( - (2x + 3)^2 - (5x - 3)^2 \) \[ = - [(4x^2 + 12x + 9) + (25x^2 - 30x + 9)] = - (29x^2 - 18x + 18) \] 9) \( - (2x + 3)^2 - (5x - 3)^2 \) \[ = - [(4x^2 + 12x + 9) + (25x^2 - 30x + 9)] = - (29x^2 - 18x + 18) \] 10) \( (2x + 1)^2 + (3x - 1)^2 \) \[ = (4x^2 + 4x + 1) + (9x^2 - 6x + 1) = 13x^2 - 2x + 2 \] 11) \( (x - y)^2 - (2x + y)^2 \) \[ = (x^2 - 2xy + y^2) - (4x^2 + 4xy + y^2) = -3x^2 - 6xy \] 12) \( - (x + 1)^2 + (x - 1)^2 \) \[ = - (x^2 + 2x + 1) + (x^2 - 2x + 1) = -4x \] 13) \( (2x + 7)^2 - (2x - 3)^2 \) \[ = [(4x^2 + 28x + 49) - (4x^2 - 12x + 9)] = 40x + 40 \] 14) \( - (x^2 + y^2) + (x + 3y)^2 \) \[ = - (x^2 + y^2) + (x^2 + 6xy + 9y^2) = 5y^2 + 6xy \] 15) \( (x + 7)^2 - (2x - 3)^2 \) \[ = (x^2 + 14x + 49) - (4x^2 - 12x + 9) = -3x^2 + 26x + 40 \] Như vậy, bạn đã hoàn thành việc rút gọn tất cả các biểu thức.