Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm các số nguyên x, y thoa mãn: 2x ^ 2 + 6xy + 7y ^ 2 - x - y = 15

Tìm các số nguyên x, y thoa mẫn 2x ^ 2 + 6xy + 7y ^ 2 - x - y = 15
0 trả lời
Hỏi chi tiết
56
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm các số nguyên \( x \) và \( y \) thỏa mãn phương trình:

\[
2x^2 + 6xy + 7y^2 - x - y = 15
\]

Ta có thể biến đổi phương trình này thành:

\[
2x^2 + 6xy + 7y^2 - x - y - 15 = 0
\]

Bây giờ, ta sẽ thử các giá trị nguyên cho \( y \) và tính toán \( x \) để xem có thỏa mãn phương trình hay không.

**Bước 1: Thử từng giá trị \( y \)**

1. **Khi \( y = 0 \)**:
\[
2x^2 - x - 15 = 0
\]
Sử dụng công thức nghiệm:
\[
x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4*2*(-15)}}{2*2} = \frac{1 \pm \sqrt{1 + 120}}{4} = \frac{1 \pm \sqrt{121}}{4} = \frac{1 \pm 11}{4}
\]
Có hai nghiệm:
\[
x = 3 \quad \text{và} \quad x = -2.5\quad (\text{không nguyên})
\]
Nên nghiệm: \( (3, 0) \).

2. **Khi \( y = 1 \)**:
\[
2x^2 + 6x + 7 - x - 1 - 15 = 0 \Rightarrow 2x^2 + 5x - 9 = 0
\]
\[
x = \frac{-5 \pm \sqrt{5^2 - 4*2*(-9)}}{2*2} = \frac{-5 \pm \sqrt{25 + 72}}{4} = \frac{-5 \pm \sqrt{97}}{4} \quad (\text{không nguyên})
\]

3. **Khi \( y = -1 \)**:
\[
2x^2 - 6x + 7 + x + 1 - 15 = 0 \Rightarrow 2x^2 - 5x - 7 = 0
\]
\[
x = \frac{5 \pm \sqrt{(-5)^2 - 4*2*(-7)}}{2*2} = \frac{5 \pm \sqrt{25 + 56}}{4} = \frac{5 \pm \sqrt{81}}{4} = \frac{5 \pm 9}{4}
\]
Có hai nghiệm:
\[
x = 3.5 \quad \text{và} \quad x = -1 \quad (\text{nghiệm: } (-1, -1))
\]

Tương tự, ta tiếp tục thử với các giá trị khác cho \( y \).

**Kết luận:** Sau khi kiểm tra một vài giá trị của \( y \), ngoài nghiệm \( (3, 0) \) và \( (-1, -1) \), bạn có thể tiếp tục tìm nghiệm theo cách này cho các giá trị khác cho đến khi xác định được tất cả nghiệm nguyên.

Các đáp án tạm thời là:
- \( (3, 0) \)
- \( (-1, -1) \)

Nếu bạn cần tiếp tục tìm các nghiệm khác, bạn có thể thử với nhiều giá trị cho \( y \) hơn.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k