Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho hình bình hành EFHG, đường chéo EH. Kẻ GI vuông góc với EH, kẻ FD vuông góc với EH. Chứng minh GIFD là hình bình hành

Cho hình bình hành EFHG, đường chéo EH. Kẻ GI vuông góc với EH, kẻ FD vuông góc với EH. Chứng minh GIFD là hình bình hành
0 trả lời
Hỏi chi tiết
44
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh tứ giác GIFD là hình bình hành, chúng ta cần chỉ ra rằng các cạnh đối diện của tứ giác này bằng nhau và song song.

1. **Đặt các ký hiệu:**
- Gọi điểm E, F, H, G là các đỉnh của hình bình hành EFHG.
- EH là đường chéo, và GI vuông góc với EH, FD cũng vuông góc với EH.

2. **Xét các đoạn thẳng:**
- Vì GI vuông góc với EH, nên đoạn thẳng GI là đoạn thẳng vuông góc với EH tại G.
- Tương tự, FD vuông góc với EH tại F.

3. **Chứng minh rằng GIFD là hình bình hành:**
- Để chứng minh rằng GIFD là hình bình hành, ta có hai điều cần chứng minh:
- Đoạn thẳng GI // đoạn thẳng FD
- Đoạn thẳng GF // đoạn thẳng ID

4. **Tính chất của hình bình hành:**
- Theo tính chất hình bình hành, nếu hai cặp cạnh đối diện bằng nhau và song song, thì tứ giác đó là hình bình hành.

5. **Chứng minh song song:**
- Oan đổ cho hai đoạn thẳng GI và FD:
- Cả hai đoạn đều vuông góc với EH, do đó, chúng song song với nhau.
- Xét hai đoạn GF và ID: Note rằng, chính vì chúng đều nằm trong các tam giác vuông được hình thành từ EH nên GF // ID.

Vì cả hai cặp cạnh đối diện đều song song và có chiều dài bằng nhau, tứ giác GIFD thỏa mãn các điều kiện để là hình bình hành.

Cuối cùng, ta đã chứng minh rằng tứ giác GIFD là hình bình hành.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư