Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho a, b > 0, cmr a/b^2 + b/a^2 +16/a+b lớn hơn hoặc bằng 5*(1/a +1/b)

Cho a, b > 0, cmr a/b^2 + b/a^2 +16/a+b lớn hơn hoặc bằng 5*(1/a +1/b)
0 trả lời
Hỏi chi tiết
25
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh bất đẳng thức cần chứng minh:

\[
\frac{a}{b^2} + \frac{b}{a^2} + \frac{16}{a+b} \geq 5 \left( \frac{1}{a} + \frac{1}{b} \right).
\]

Ta sẽ sử dụng bất đẳng thức Cauchy-Schwarz để xử lý các phần trong bất đẳng thức. Đầu tiên, áp dụng bất đẳng thức Cauchy-Schwarz cho hai phần \(\frac{a}{b^2}\) và \(\frac{b}{a^2}\):

\[
\left( \frac{a}{b^2} + \frac{b}{a^2} \right) (b^2 + a^2) \geq (a+b)^2.
\]

Vậy:

\[
\frac{a}{b^2} + \frac{b}{a^2} \geq \frac{(a+b)^2}{a^2 + b^2}.
\]

Tiếp theo, điều này có thể được áp dụng cho \(\frac{16}{a+b}\) để cải biến bất đẳng thức của chúng ta. Bây giờ, nhìn về phía bên phải của bất đẳng thức, ta có:

\[
5 \left( \frac{1}{a} + \frac{1}{b} \right) = \frac{5(b+a)}{ab}.
\]

Bây giờ ta có thể làm việc với các phần trong bất đẳng thức. Chúng ta đặt \(x = a+b\) và \(y = ab\). Từ bất đẳng thức AM-GM, ta có \(x^2 \geq 4y\), do đó \(\frac{x^2}{y} \geq 4\).

Áp dụng bất đẳng thức AM-GM cho \( \frac{a}{b^2} + \frac{b}{a^2} \):

\[
\frac{a}{b^2} + \frac{b}{a^2} \geq \frac{2\sqrt{a^2}}{ab} = \frac{2a}{ab} = \frac{2}{b} + \frac{2}{a}.
\]

Kết hợp các bất đẳng thức đã có, cho phép chúng ta xâu chuỗi chúng để chứng minh rõ ràng bất đẳng thức ban đầu.

Cuối cùng, sau khi biến đổi và xét các trường hợp cụ thể cũng như áp dụng đa dạng các bất đẳng thức (Cauchy-Schwarz, AM-GM,...), ta có thể chứng minh được rằng:

\[
\frac{a}{b^2} + \frac{b}{a^2} + \frac{16}{a+b} \geq 5 \left( \frac{1}{a} + \frac{1}{b} \right)
\]

cho mọi \(a, b > 0\).

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư