Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (A, B là các tiếp điểm) sao cho
a) Xác định tâm và bán kính đường tròn nội tiếp tam giác MAB.
b) Tính chu vi tam giác MAB.
c) Vẽ đường thẳng d đi qua M cắt đường tròn (O) tại hai điểm P, Q. Xác định vị trí của đường thẳng d sao cho MQ + MP đạt giá trị nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) ⦁ Ta có MA, MB là các tiếp tuyến của đường tròn (O) lần lượt tại A và B nên MA ⊥ OA, MB ⊥ OB.
Xét ∆OAM vuông tại A, theo định lí Pythagore, ta có:
OM2=MA2+OA2=R32+R2=4R2
Suy ra OM = 2R.
Gọi I là giao điểm của (O) với tia OM, ta có OI = R nên IM = OM – OI = 2R – R = R.
Do đó, IM = IO = R nên I là trung điểm của OM.
Do ∆OAM vuông tại A nên trung điểm I của cạnh huyền OM là tâm đường tròn ngoại tiếp ∆OAM.
Do ∆OBM vuông tại B nên trung điểm I của cạnh huyền OM là tâm đường tròn ngoại tiếp ∆OBM.
Do đó bốn điểm A, M, B, O cùng nằm trên đường tròn (I) đường kính OM.
Vậy I là tâm đường tròn ngoại tiếp tam giác AMB. (1)
⦁ Xét ∆OAM vuông tại A, ta có: sin AMO^=OAOM=12
Suy ra AMO^=30°.
Do MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M nên MA = MB và MO là tia phân giác của góc AMB, suy ra AMB^=2AMO^=2·30°=60°.
Vì vậy tam giác AMB là tam giác đều có MA=MB=AB=R3 (2)
Từ (1), (2) suy ra đường tròn nội tiếp tam giác đều MAB cạnh R3 có tâm là I và bán kính là R3·36=R2.
b) Do tam giác MAB đều cạnh R3 nên chu vi tam giác MAB bằng 3R3.
c) Ta có MBO^=MBP^+PBO^=90° suy ra MBP^=90°-PBO^. (3)
Do ∆OBP cân tại O (do OB = OP) nên ta có:
PBO^=BPO^=180°-BOP^2=90°-12BOP^.
Xét đường tròn (O) có BQP^, BOP^ lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung BP nên BQP^=12BOP.^
Do đó PBO^=90°-BQP^. Hay BQP^=90°-PBO^. (4)
Từ (3) và (4) suy ra MBP^=BQP^.
Xét ∆MPB và ∆MBQ có:
MBP^=MQB^, BMQ^ là góc chung
Do đó ∆MPB ᔕ ∆MBQ (g.g).
Suy ra MBMQ=MPMB hay MP·MQ=MB2=R32=3R2.
Lại có (MQ – MP)2 ≥ 0 hay (MQ + MP)2 ≥ 4MQ.MP
Suy ra (MQ + MP)2 ≥ 4.3R2 = 12R2
Do đó MQ+MP≥12R2=2R3 (dấu “=” xảy ra khi MQ = MP).
Vậy MQ + MP đạt giá trị nhỏ nhất bằng 2R3 khi đó MP = MQ hay đường thẳng d đi qua M và A hoặc d đi qua M và B.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |