Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 53 trang 144 sách bài tập Toán 7 Tập 1: Cho tam giác ABC. Các tua phân giác của các góc B và C cắt nhau ở O. Kẻ OD⊥AC, kẻ OE⊥AB. Chứng minh rằng OD = OE
Lời giải:
Kẻ OH⊥BC
Xét hai tam giác vuông OEB và OHB, ta có:
∠(OEB) =∠OHB=90o
Cạnh huyền OB chung
∠(EBO) =∠(HBO)
Suy ra Δ OEB = Δ OHB (cạnh huyền góc nhọn)
⇒OE = OH (hai cạnh tương ứng)
Xét hai tam giác vuông OHC và ODC, ta có:
∠(OHC) =∠ODC=90o
Cạnh huyền OB chung
∠(HCO) =∠(DCO)
Suy ra Δ OHC = Δ ODC (cạnh huyền góc nhọn)
⇒OD = OH (hai cạnh tương ứng)
Từ (1) và (2) suy ra: OE = OD
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |