LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Bài 7 trang 90 SGK Giải tích 12

1 trả lời
Hỏi chi tiết
419
0
0
Nguyễn Thị Nhài
12/12/2017 01:20:25
Bài 7. Giải các phương trình sau:
a) \({3^{x + 4}} + {\rm{ }}{3.5^{x + 3}} = {\rm{ }}{5^{x + 4}} + {\rm{ }}{3^{x + 3}}\)
b) \({25^x}-{\rm{ }}{6.5^x} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)
c) \({4.9^x} + {\rm{ }}{12^x}-{\rm{ }}{3.16^x} = {\rm{ }}0\)
d) \(lo{g_7}\left( {x - 1} \right)lo{g_7}x{\rm{ }} = {\rm{ }}lo{g_7}x\)
e) \({\log _3}x + {\log _{\sqrt 3 }}x + {\log _}x = 6\)
g) \(\log = \log x\)
Giải:
a)
\(\eqalign{
& {3^{x + 4}} + {3.5^{x + 3}} = {5^{x + 4}} + {3^{x + 3}} \cr
& \Leftrightarrow {3^{x + 4}} - {3^{x + 3}} = {5^{x + 4}} - {3.5^{x + 3}} \cr
& \Leftrightarrow {2.3^{x + 3}} = {2.5^{x + 3}} \cr
& \Leftrightarrow {({3 \over 5})^{x + 3}} = 1 \Leftrightarrow x + 3 = 0 \Leftrightarrow x = - 3 \cr} \)
b)  \({25^x}-{\rm{ }}{6.5^x} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)
Đặt \(t = 5^x\) (\(t > 0\)) \(⇔ x = log_5 t\).
Phương trình đã cho trở thành:
\(t^2– 6t + 5 = 0 ⇔ t ∈ {\rm{\{ }}1;5\} \)
Do đó, phương trình đã cho có nghiệm là \(x = 0, x = 1\)
c) \({4.9^x} + {\rm{ }}{12^x}-{\rm{ }}{3.16^x} = {\rm{ }}0\)
Chia phương trình cho \(16^x\) và đặt \(t = {({3 \over 4})^x}(t > 0) \Leftrightarrow x = {\log _}t\) ta được phương trình:
\(4t^2+ t – 3 = 0 ⇔ (t+1)(4t-3) = 0\)
Phương trình bậc hai này chỉ có một nghiệm dương \(t = {3 \over 4}\) .
Do đó phương trình đã cho có nghiệm duy nhất là : \(x = {\log _}{3 \over 4} = 1\)
d) \(lo{g_7}\left( {x - 1} \right)lo{g_7}x{\rm{ }} = {\rm{ }}lo{g_7}x\)
Điều kiện: \(x > 1\) 
\(\eqalign{
& lo{g_7}\left( {x - 1} \right)lo{g_7}x = lo{g_7}x \cr
& \Leftrightarrow {\log _7}x({\log _7}(x - 1) - 1) = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _7}x = 0 \hfill \cr
{\log _7}(x - 1) = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
(x - 1) = 7 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = 8 \hfill \cr} \right. \cr}\)
Kết hợp với điều kiện xác định ta có: \(x = 8\)
Vậy phương trình đã cho có nghiệm là \(x = 8\)
e) \({\log _3}x + {\log _{\sqrt 3 }}x + {\log _}x = 6\)
Điều kiện : \(x > 0\)
Ta có:
\(\eqalign{
& {\log _3}x + {\log _{\sqrt 3 }}x + {\log _}x = 6 \cr
& \Leftrightarrow {\log _3}x + {\log _{\sqrt 3 }}x - {\log _3}x = 6 \cr
& \Leftrightarrow {\log _{\sqrt 3 }}x = 6 \Leftrightarrow x = {3^3} \cr
& \Leftrightarrow x = 27 \cr} \)
Vậy phương trình đã cho có nghiệm là: \(x = 27\)
g) \(\log = \log x\)
Ta có:
\(\eqalign{
& \log = \log x \Leftrightarrow = x > 0 \cr
& \Leftrightarrow \left\{ \matrix{
x > 0,x \ne 1 \hfill \cr
{x^2} - 2x - 8 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow x = 4 \cr} \)
Vậy phương trình đã cho có nghiệm là: \(x = 4\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư