Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đề kiểm tra Giải tích 12 cuối năm (phần 5)
Câu 28: Môđun của số phức z = -1 + 7i là
A. 7 B. 6 C. √50 D. 8
Câu 29: Căn bậc hai của số phức z = -8 + 6i là
A. -1 - 3i và 1 + 3i B. -1 + 3i và 1 - 3i
C. 3 + i và -3 - i D. -3 + i và -3 - i.√2
Câu 30: Trên tập số phức, phương trình x2 + 2x + 3 = 0 có nghiệm là
A. 1 - √2i và 1 + √2i B. -1 - √2i và -1 + √2i
C. 1 + √2i và -1 + √2i D. 1 + √2i và -1 - √2i
Câu 31: Phương trình z2 + 4z + 7 có hai nghiệm z1, z2 . Giá trị của biểu thức T = |z1|2 + |z2|2 bằng
A. 7 B. 2√7 C. 14 D. 25
Câu 32: Cho các số phức z1 = -1 + i, z2 = 1 - 2i, z3 = 1 + 2i. Giá trị của biểu thức
A. 1 B. 3 C. 4 D. 5.
Câu 33: Tập hợp các điểm biểu diễn số phức z thỏa mãn z' = (z + i)(z− + i) là một số thực và là đường thẳng có phương trình
A. x = 0 B. y = 0 C. x = y D. x = -y
Câu 34: Cho số phức z có môđun bằng 1. Giá trị nhỏ nhất của biểu thức
A. 2 B. 0 C. -2 D. -1
Hướng dẫn giải và Đáp án
28-C | 29-A | 30-B | 31-C | 32-D | 33-A | 34-C |
Câu 28:
Câu 29:
Ta có: z = -8 + 6i = 9i2 + 6i + 1 = (3i + 1)2
Do đó các căn bậc hai của z là ±(1 + 3i)
Chú ý: Có thể gọi căn bậc hai của z = -8 + 6i là w = a + bi (a, b ∈ R). Ta có:
w2 = a2 + 2abi + b2i2 = a2 - b2 + 2abi
Ta có:
Vậy các căn bậc hai của z = -8 + 6i là -1 - 3i và 1 + 3i
Câu 30:
Ta có: Δ' = 12 - 3 = -2 = 2i2
Vậy phương trình có hai nghiệm là z1,2 = -1 ± √2i
Câu 31:
Ta có: Δ 4 - 7 = -3 = 3i2
Phương trình có hai nghiệm z1,2 = -2 ± i√3.
Vậy T = 2(√7)2 = 14
Câu 32:
Ta có: z1z2− + z2z3 + z3z1− + (1 - 2i)= (-1 + i)(1 + 2i) + (1 - 2i)(1 + 2i) + (1 + 2i)(-1 - i)
= (1 + 2i)( -1 + i -1 - i) + 1 - 4i2 = -2(1 + 2i) + 1 + 4 = 3 - 4i
Câu 33:
Đặt z = a + bi (a, b ∈ R). Ta có
z' = [a + (b + 1)i][a - (b - 1)i] = a2 + (b - 1)2 + 2ai
Do đó z' ∈ R <=> a = 0.
Vậy tập hợp các điểm M(a; b) biểu diễn số phức z là đường thẳng có phương trình z = 0
Câu 34:
Đặt z = a + bi (a, b ∈ R). Ta có |z| = 1 nên a2 + b2 = 1 và 1/z = z− = a - bi
Suy ra T = (a + bi)2 + (a - bi)2 = 2(a2 - b2) = 2(2a2 - 1) ≥ -2
Dấu “=” xảy ra khi a = 0. Vậy giá trị nhỏ nhất của T là -2
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |