Bài tập  /  Bài đang cần trả lời

Tính diện tích tam giác ABD và tam giác BCD

Các đỉnh A(4,6), B(10,2), C(10,12), D(2,12).Tính diện tích tam giác ABD và tam giác BCD
2 trả lời
Hỏi chi tiết
24
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tính diện tích của các tam giác ABD và BCD, ta có thể sử dụng công thức tính diện tích tam giác với tọa độ đỉnh, công thức là:

\[
S = \frac{1}{2} \left| x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) \right|
\]

**1. Tính diện tích tam giác ABD:**

Ta có các tọa độ:
- A(4, 6) → \( (x_1, y_1) \)
- B(10, 2) → \( (x_2, y_2) \)
- D(2, 12) → \( (x_3, y_3) \)

Áp dụng vào công thức, ta có:

\[
S_{ABD} = \frac{1}{2} \left| 4(2 - 12) + 10(12 - 6) + 2(6 - 2) \right|
\]

Tính từng phần:

- \( 4(2 - 12) = 4 \cdot (-10) = -40 \)
- \( 10(12 - 6) = 10 \cdot 6 = 60 \)
- \( 2(6 - 2) = 2 \cdot 4 = 8 \)

Tổng lại:

\[
S_{ABD} = \frac{1}{2} \left| -40 + 60 + 8 \right| = \frac{1}{2} \left| 28 \right| = \frac{28}{2} = 14
\]

**2. Tính diện tích tam giác BCD:**

Tọa độ:
- B(10, 2) → \( (x_1, y_1) \)
- C(10, 12) → \( (x_2, y_2) \)
- D(2, 12) → \( (x_3, y_3) \)

Áp dụng công thức, ta có:

\[
S_{BCD} = \frac{1}{2} \left| 10(12 - 12) + 10(12 - 2) + 2(2 - 12) \right|
\]

Tính từng phần:

- \( 10(12 - 12) = 10 \cdot 0 = 0 \)
- \( 10(12 - 2) = 10 \cdot 10 = 100 \)
- \( 2(2 - 12) = 2 \cdot (-10) = -20 \)

Tổng lại:

\[
S_{BCD} = \frac{1}{2} \left| 0 + 100 - 20 \right| = \frac{1}{2} \left| 80 \right| = \frac{80}{2} = 40
\]

**Kết quả:**
- Diện tích tam giác ABD là 14.
- Diện tích tam giác BCD là 40.
3
0
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
ngân trần
08/12 10:40:07
+4đ tặng
S=1/2​×∣x1​(y2​−y3​)+x2​(y3​−y1​)+x3​(y1​−y2​)∣
SABD​=1/2​×∣4(2−12)+10(12−6)+2(6−2)∣
SABD​=1/2​×∣4(−10)+10(6)+2(4)∣
SABD​=1/2​×∣28∣=14
SBCD​=1/2​×∣10(12−12)+10(12−2)+2(2−12)∣
SBCD​=1/2​×∣80∣=40

Diện tích tam giác ABD = 14 đơn vị vuông.
Diện tích tam giác BCD = 40 đơn vị vuông.

 

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 10 mới nhất
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k