Bài tập  /  Bài đang cần trả lời

Quảng cáo sản phẩm là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp

----- Nội dung dịch tự động từ ảnh -----
Việc 2. Quảng cáo sản phẩm.

Một công ty A dự kiến chi khoảng 900 triệu đồng cho việc quảng cáo sản phẩm là một hoạt động quan trọng trong kinh doanh. Theo thông báo số 10/2019, giá quảng cáo trên truyền hình VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo và không quá 50 lần vào khung giờ từ 16g00 đến 17g00.

Gợi ý và lý luận là số. Hãy tìm x và y sao cho tối ưu.
1 trả lời
Hỏi chi tiết
38
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài toán này, trước tiên ta cần phân tích thông tin về chi phí quảng cáo và yêu cầu đặt ra cho công ty A.

### Thông tin về chi phí quảng cáo:
- Quảng cáo vào khung giờ 20g30: 30 triệu đồng cho 15 giây hoặc 6 triệu đồng cho 15 giây.
- Quảng cáo vào khung giờ 16g00 đến 17g00: 6 triệu đồng cho 15 giây.

### Điều kiện của công ty A:
1. Tổng ngân sách không quá 900 triệu đồng.
2. Ít nhất 10 lần quảng cáo vào khung giờ 20g30.
3. Không quá 50 lần quảng cáo vào khung giờ 16g00 đến 17g00.

### Phương pháp giải:
- Gọi \( x \) là số lần quảng cáo vào khung giờ 20g30 (từ 10 đến vô cùng) và \( y \) là số lần quảng cáo vào khung giờ 16g00 đến 17g00 (từ 0 đến 50).
- Chi phí quảng cáo cho từng khung giờ:
- Khung 20g30: \( C_x = x \times 30 \) triệu (cho 15 giây 1 lần).
- Khung 16g00 đến 17g00: \( C_y = y \times 6 \) triệu (cho 15 giây 1 lần).

### Đặt bài toán tối ưu hóa:
- Mục tiêu: Tối đa hóa số lần quảng cáo \( x + y \).
- Ràng buộc:
1. \( C_x + C_y \leq 900 \).
2. \( x \geq 10 \).
3. \( y \leq 50 \).

### Giải bài toán:
1. **Thay thế**: Tính toán phạm vi giá trị của \( x \) và \( y \) sao cho thỏa mãn điều kiện về ngân sách và số lần quảng cáo.

2. **Tính số lần quảng cáo tối đa**:
- Nếu chọn tối đa \( x = 10 \) (để thoả mãn điều kiện tối thiểu) thì:
- Chi phí từ khung 20g30: \( C_x = 10 \times 30 = 300 \) triệu đồng.
- Ngân sách còn lại: \( 900 - 300 = 600 \) triệu đồng.
- Vậy có thể quảng cáo tối đa:
- \( C_y = 600 = y \times 6 \) → \( y = 100 \) (vượt quá giới hạn 50, tức là không khả thi).
- Giảm số lần quảng cáo vào khung 20g30:
- Nếu \( x = 20 \): \( C_x = 20 \times 30 = 600 \) triệu.
- Ngân sách còn lại: \( 900 - 600 = 300\).
- Tính \( y \) từ ngân sách còn lại:
- \( y = 50 \) (đạt tối đa).
- Tổng số quảng cáo: \( 20 + 50 = 70 \).

### Kết luận:
- Giới hạn ngân sách và điều kiện đưa ra cho công ty A có thể triển khai tối đa 70 lần quảng cáo, với điều kiện là 20 lần vào khung giờ 20g30 và 50 lần vào khung giờ 16g00 đến 17g00.
0
0
Thảo Nguyên
22/08 13:59:29
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 10 mới nhất
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư